Some $${\mathbb {A}}$$-numerical radius inequalities for $$d\times d$$ operator matrices
نویسندگان
چکیده
Let A be a positive (semidefinite) bounded linear operator acting on complex Hilbert space \(\big ({\mathcal {H}}, \langle \cdot , \rangle \big )\). The semi-inner product \({\langle x, y\rangle }_A := Ax, \), \(x, y\in {\mathcal {H}}\) induces seminorm \({\Vert \Vert }_A\) \({\mathcal {H}}\). T an A-bounded {H}}\), the A-numerical radius of is given by $$\begin{aligned} \omega _A(T) = \sup \Big \{\big |{\langle Tx, x\rangle }_A\big |\;; \,\,x\in \;{\Vert x\Vert 1\Big \}. \end{aligned}$$In this paper, we establish several inequalities for \(\omega _{\mathbb {A}}({\mathbb {T}})\), where \({\mathbb {T}}=(T_{ij})\) \(d\times d\) matrix with \(T_{ij}\) are operators and {A}}\) diagonal whose each entry A. Some obtained results generalize some earlier proved Bhunia et al. (Math. Inequal. Appl. 24(1), 167–183, 2021).
منابع مشابه
Further inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملSharper Inequalities for Numerical Radius for Hilbert Space Operator
We give several sharp inequalities for the numerical radius of Hilbert space operators .It is shown that if A and B are bounded linear operators on complex Hilbert space H , then 1 2 1 2(1 ) 2(1 ) 2 2 2 2 1 ( ) 2 ( ) 2 r r r r r r w A B A B A B A B α α α α − − − ∗ ∗ ⎛ ⎞ + ≤ + + + + + ⎜ ⎟ ⎝ ⎠ , for 0<r 1 ≤ and ( ) 1 , 0 ∈ α , and if ( ) n A M ∈ , then 2 1 ( ) 4 w A ≤ ( ) 2 2 A A A A ∗ ∗ + + − , ...
متن کاملSome numerical radius inequalities with positive definite functions
Using several examples of positive definite functions, some inequalities for the numerical radius of matrices are investigated. Also, some open problems are stated.
متن کاملSome improvements of numerical radius inequalities via Specht’s ratio
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
متن کاملSome inequalities on the spectral radius of matrices
Let [Formula: see text] be nonnegative matrices. In this paper, some upper bounds for the spectral radius [Formula: see text] are proposed. These bounds generalize some existing results, and comparisons between these bounds are also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rendiconti Del Circolo Matematico Di Palermo
سال: 2021
ISSN: ['1973-4409', '0009-725X']
DOI: https://doi.org/10.1007/s12215-021-00623-9